RIGIDITY OF p-COMPLETED CLASSIFYING SPACES OF ALTERNATING GROUPS AND CLASSICAL GROUPS OVER A FINITE FIELD

KENSHI ISHIGURO

ABSTRACT. A p-adic rigid structure of the classifying spaces of certain finite groups π , including alternating groups A_n and finite classical groups, is shown in terms of the maps into the p-completed classifying spaces of compact Lie groups. The spaces $(B\pi)_p^{\wedge}$ have no nontrivial retracts. As an application, it is shown that $(BA_n)_p^{\wedge} \simeq (B\Sigma_n)_p^{\wedge}$ if and only if $n \not\equiv 0, 1$, mod p. It is also shown that $(BSL(n, \mathbb{F}_q))_p^{\wedge} \simeq (BGL(n, \mathbb{F}_q))_p^{\wedge}$ where q is a power of p if and only if (n, q-1)=1.

If K and G are compact Lie groups, there are usually relatively few homotopy classes of maps $BK \to BG$ or $(BK)_p^{\wedge} \to (BG)_p^{\wedge}$. For instance, if K is connected and simple and G is connected with $\operatorname{rank}(K) > \operatorname{rank}(G)$, the homotopy sets [BK, BG] and $[(BK)_p^{\wedge}, (BG)_p^{\wedge}]$ are trivial [1, 20] and the p-completion $(BK)_p^{\wedge}$ has no nontrivial retracts at any prime p [11]. We will prove similar results with $(BK)_p^{\wedge}$ replaced by $(B\pi)_p^{\wedge}$, where π is an alternating group or a classical group over a finite field, and the notion of rank replaced by the notion of p-rank. (The p-rank of a group π is the maximal rank of an elementary abelian p-subgroup of π .)

Let G be a compact Lie group. Recall that if π is a finite group with p-Sylow subgroup π_p and f is a map $(B\pi)_p^{\wedge} \to (BG)_p^{\wedge}$, then the restriction $f|B\pi_p$ must be of the form $B\rho$ for some homomorphism $\rho \colon \pi_p \to G$, [7, 2, 15]. The following theorem gives a sufficient condition that the homomorphism ρ be one-to-one in terms of weak closures of elements of the center of the p-Sylow subgroup π_p . The weak closure of the one-element set $\{z\}$ in π_p with respect to π is the subgroup of the p-Sylow subgroup generated by the set $\{xzx^{-1}|x\in\pi\}\cap\pi_p$. We prove

Theorem 1. Let π be a finite group with p-Sylow subgroup π_p . Suppose that, for any nonidentity element z of the center of π_p , the weak closure of $\{z\}$ in π_p with respect to π is equal to the p-Sylow subgroup π_p . If G is a compact Lie group and $f: (B\pi)_p^{\wedge} \to (BG)_p^{\wedge}$ is a nonzero map with $f|B\pi_p \simeq B\rho$ for a homomorphism ρ , then $\rho: \pi_p \to G$ is injective.

Received by the editors November 28, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 55P45, 55R35; Secondary 20D06, 20J06, 55P60.

Key words and phrases. Classifying space, p-completion, mapping space, simple group, compact Lie group.

Corollary 2. Let π be a finite group with p-Sylow subgroup π_p and let G be a compact Lie group. Assume that if $f: (B\pi)_p^{\wedge} \to (BG)_p^{\wedge}$ is a nonzero map with $f|B\pi_p \simeq B\rho$, then the homomorphism $\rho: \pi_p \to G$ is injective. Then each of the following holds:

- (a) If p-rank $(\pi) > p$ -rank(G), then $[(B\pi)_p^{\wedge}, (BG)_p^{\wedge}] = 0$, and the evaluation map $\max((B\pi)_p^{\wedge}, (BG)_p^{\wedge}) \to (BG)_p^{\wedge}$ is a weak equivalence.
 - (b) The p-complete classifying space $(B\pi)_p^{\wedge}$ has no nontrivial retracts.

We will show that the hypothesis of π in Theorem 1 is satisfied by many finite (simple) groups at p. The list of such groups contains the alternating groups A_n at any prime p, the finite classical groups $GL(n, \mathbb{F}_q)$, $O(n, \mathbb{F}_q)$ with $n \geq 5$ and q odd, $Sp(2n, \mathbb{F}_q)$ with $(n, q) \neq (2, 2)$ and $U(2n, \mathbb{F}_{q^2})$ at p which is the characteristic of the finite fields. All of the finite simple groups of types A, B, C, and D associated with the above classical groups at the prime p also satisfy the hypothesis in Theorem 1. Consequently Theorem 1 and Corollary 2 hold for these groups.

The proof of Theorem 1 makes use of the property of the images of conjugacy classes in a p-Sylow subgroup under the homomorphism ρ . This property is stated in Lemma 1.1. Since $f|B\pi_p\simeq 0$ implies $f\simeq 0$ [9], the remaining work is to show that if ρ is not injective, the homomorphism is trivial. A sufficient condition is the hypothesis dealing with weak closures.

This hypothesis is related to the fusion problem in group theory, [19]. G. Glauberman points out that there are finite simple groups which do not satisfy the hypothesis. An example is given by the projective group $PSU(3, \mathbb{F}_{p^2})$ of 3×3 special unitary matrices with p odd, since the center of a p-Sylow subgroup is strongly closed. One can show, however, that Corollary 2 holds for this group at the prime p. This suggests that Corollary 2 may be true without assumption of the property of a p-Sylow subgroup if the finite group π is simple.

This paper consists of six sections. In §1, we discuss maps between classifying spaces and prove Theorem 1 and Corollary 2. From §2 to §6, alternating groups, symmetric groups, and finite classical groups are treated. In particular, we show that the hypothesis of π in Theorem 1 is satisfied by these groups at a suitable prime p.

The author would like to thank L. Evans, E. Friedlander and M. Feshbach for their help.

1. Maps between classifying spaces

Suppose H is a subgroup of G, and $x, y \in H$. We say that x and y are conjugate in G, denoted by $x \sim y$, if $y = gxg^{-1}$ for some $g \in G$. For $g \in G$, the conjugation map $C_g : H \to gHg^{-1}$ is defined by $C_g(x) = gxg^{-1}$ for each $x \in H$. If $g \in H$, then the self-map BC_g of BH is homotopic to the identity map, [18].

Lemma 1.1. Suppose a finite p-group γ is a subgroup of a compact Lie group G'. Let $f:(BG')^{\wedge}_{p} \to (BG)^{\wedge}_{p}$ with $f|B\gamma \simeq B\rho$ for $\rho \in \operatorname{Hom}(\gamma,G)$. If $x,y \in \gamma$ and $x \sim y$, then $\rho(x) \sim \rho(y)$.

Proof. Suppose $y = uxu^{-1}$ for $u \in G'$. Since the conjugation map BC_u on $(BG')_p^{\wedge}$ is homotopic to the identity, we have the homotopy commutative

diagram:

$$B\gamma \xrightarrow{Bj_1} (BG')_p^{\wedge} f$$

$$BC_u \downarrow \qquad BC_u \downarrow \qquad (BG)_p^{\wedge} \cdot$$

$$B(u\gamma u^{-1}) \xrightarrow{Bj_2} (BG')_p^{\wedge} f$$

In this diagram j_1 and j_2 are the inclusions. We see $f \circ Bj_2 \simeq B\rho'$ for some $\rho' \in \operatorname{Hom}(u\gamma u^{-1}, G)$. Since $f \circ Bj_1 \simeq f \circ Bj_2 \circ BC_u$, it follows that $\rho = \rho' \circ C_u$ up to G-conjugation. Consequently $\rho(x) \underset{G}{\sim} \rho' \circ C_u(x) = \rho'(y)$. Next suppose $i_1 : \gamma \cap u\gamma u^{-1} \to \gamma$ and $i_2 : \gamma \cap u\gamma u^{-1} \to u\gamma u^{-1}$ are the inclusions. We notice that $y \in \gamma \cap u\gamma u^{-1}$ and $f \circ Bj_1 \circ Bi_1 \simeq f \circ Bj_2 \circ Bi_2$. It follows that $\rho(y) \underset{G}{\sim} \rho'(y)$ and therefore $\rho(x) \underset{G}{\sim} \rho(y)$. \square

We remark here that if $x \in \ker \rho$ and $x \sim y$, then $y \in \ker \rho$. Consequently the weak closure of any subset of $\ker \rho$ in γ with respect to G' is included in $\ker \rho$.

Lemma 1.2. Suppose f is a map from $(B\pi)_p^{\wedge}$ to $(BG)_p^{\wedge}$. If $f|B\pi_p \simeq 0$, then $f \simeq 0$.

Proof. Along the line of the proof of result of Friedlander-Mislin [9, Theorem 3.1] we see that if the component of the mapping space $\max_*(B\gamma, (BG)_p^{\wedge})_0$ which contains the constant map is weakly contractible for any finite p-group γ , then the map $f\colon (B\pi)^\wedge_p\to (BG)^\wedge_p$ factors through a p-cyclic space defined in [13]. From the fibration $map_*(X, Y)_0 \rightarrow map(X, Y)_0 \rightarrow Y$, we see that $\operatorname{map}_*(X,Y)_0$ is weakly contractible if and only if the basepoint evaluation map $\varepsilon: \operatorname{map}(X, Y)_0 \to Y$ is a weak equivalence. Suppose $\lambda: Y \to \operatorname{map}(X, Y)_0$ is the map which sends $y \in Y$ to the constant map $\lambda(y)(x) = y$. Note here that the composite $\varepsilon \circ \lambda$ is the identity map. Consequently if λ is an equivalence, so is ε . To complete the proof, it remains to show that the map $\lambda:(BG)_p^\wedge\to$ $\operatorname{map}(B\gamma, (BG)^{\wedge}_{p})_{0}$ is weakly equivalent. We use an induction on the order of the finite p-group γ . A result of Lannes [12] implies the case for $\gamma = \mathbb{Z}/p$, since G is the centralizer of the trivial homomorphism $\gamma \to G$. In general, consider a group extension $1 \to N \to \gamma \to \sigma \to 1$ where $\sigma = \mathbb{Z}/p$. Recall that the homotopy fixed point space $\operatorname{map}_{\sigma}(E\sigma, \operatorname{map}(BN, (BG)_{n}^{\wedge}))$ is homotopy equivalent to $\operatorname{map}(B\gamma\,,\,(BG)^\wedge_p)$. The σ -action on $\operatorname{map}(BN\,,\,(BG)^\wedge_p)=\operatorname{map}_N(E\gamma\,,\,(BG)^\wedge_p)$ is given by the rule $(f \cdot s)(u) = f(ur^{-1}) \cdot r$ where $f \in \text{map}_N(E\gamma, (BG)^{\wedge}_p), s \in \sigma$ and $r \in \gamma$ is a preimage of s under the epimorphism $\gamma \to \sigma$. Consequently, one has the commutative diagram:

$$(BG)_{p}^{\wedge} \xrightarrow{\lambda} \operatorname{map}(B\gamma, (BG)_{p}^{\wedge})_{0}$$

$$\downarrow^{\lambda_{\sigma}} \qquad \uparrow$$

$$\operatorname{map}(B\sigma, (BG)_{p}^{\wedge})_{0} \longrightarrow \operatorname{map}_{\sigma}(E\sigma, \operatorname{map}(BN, (BG)_{p}^{\wedge})_{0})_{0}$$

Since the vertical maps are homotopy equivalences, it remains to show the lower horizontal map is an equivalence. This map is induced by the σ -equivalence

 $(BG)_p^{\wedge} \xrightarrow{\lambda_N} \operatorname{map}(BN, X)_0$, where the action of σ on the space $(BG)_p^{\wedge}$ is trivial. We conclude that λ is a homotopy equivalence. \square

The result of Friedlander-Mislin implies that Lemma 1.2 is still true when $(BG)_p^{\wedge}$ is replaced by the *p*-completion of a simply connected space whose loop space is homotopy equivalent to a finite dimensional complex. In fact, we have seen that the result holds for a space X if $\max_*(B\gamma, X)_0$ is weakly contractible for any finite *p*-group γ . This condition is satisfied by a simply connected *p*-complete space X where $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra. This is due to Dwyer-Wilkerson [6].

Proof of Theorem 1. From Lemma 1.2, it suffices to show that if $f|B\pi_p \simeq B\rho$ and the homomorphism $\rho: \pi_p \to G$ is not injective, then ρ is trivial. Suppose $\ker \rho \neq 1$. Then $\ker \rho$ is a nontrivial normal subgroup of a finite p-group. Hence $\ker \rho$ must contain a nonidentity element of the center of π_p . Lemma 1.1 together with our assumption shows $\ker \rho = \pi_p$. \square

Lemma 1.3. The evaluation map $map((B\pi)_p^{\wedge}, (BG)_p^{\wedge})_0 \rightarrow (BG)_p^{\wedge}$ is weakly equivalent.

Proof. It suffices to show the fibre $\max_*((B\pi)_p^{\wedge}, (BG)_p^{\wedge})_0$ is weakly contractible. Recall that the natural map

$$\underset{\pi/\pi_{\alpha}\in O_p(\pi)}{\operatorname{hocolim}}(E\pi\times_{\pi}\pi/\pi_{\alpha})\to B\pi$$

is a mod p homology isomorphism, [14, Lemma 3.1]. Here π_{α} is a p-subgroup of π . Since $\pi_1(BG)$ is finite, the space BG is \mathbb{Z}/p -good [2, p. 215]. Consequently

$$\pi_i \operatorname{map}_*(X, (BG)_p^{\wedge}) = \pi_i \operatorname{map}_*(\widehat{X}_p, (BG)_p^{\wedge})$$

for any X and any $i \ge 0$. Hence we see the following:

$$\begin{split} \pi_{i} \operatorname{map}_{*}((B\pi)_{p}^{\wedge}, (BG)_{p}^{\wedge})_{0} \\ &= \pi_{i} \operatorname{map}_{*} \left(\left(\operatorname{hocolim}_{\overrightarrow{\alpha}} B\pi_{\alpha} \right)_{p}^{\wedge}, (BG)_{p}^{\wedge} \right)_{0} \\ &= \pi_{i} \operatorname{map}_{*} \left(\operatorname{hocolim}_{\overrightarrow{\alpha}} B\pi_{\alpha}, (BG)_{p}^{\wedge} \right)_{0} \\ &= \pi_{i} \operatorname{holim}_{-} \operatorname{map}_{*} (B\pi_{\alpha}, (BG)_{p}^{\wedge})_{0} \,. \end{split}$$

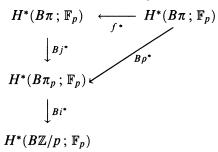
In the proof of Lemma 1.2, we have seen that $\max_*(B\pi_\alpha, (BG)_p^{\wedge})$ is weakly contractible for any α . Consequently, so is the cosimplicial replacement $\prod^*\{\max_*(B\pi_\alpha, (BG)_p^{\wedge})\}$, [2, p. 303]. By [2, Mapping Lemma, p. 285] we see that

$$\operatorname{holim}_{\stackrel{\leftarrow}{\alpha}}\operatorname{map}_*(B\pi_\alpha\,,\,(BG)^\wedge_p)_0$$

is weakly contractible and hence so is $\operatorname{map}_*((B\pi)_p^{\wedge}, (BG)_p^{\wedge})_0$. \square

Lemma 1.4. Let f be a self-map of $(B\pi)_p^{\wedge}$ with $f|B\pi_p \simeq B\rho$. The map f is a homotopy equivalence if and only if the homomorphism ρ is injective.

Proof. Suppose f is a homotopy equivalence. If ρ is not injective, then we can find a subgroup \mathbb{Z}/p of $\ker \rho$. Let $i: \mathbb{Z}/p \to \pi_p$ and $j: \pi_p \to \pi$ be the inclusions. We consider the commutative diagram



Since $\mathbb{Z}/p \subset \ker \rho$, we see that $Bi^* \circ B\rho^* = B(\rho \cdot i)^* = 0$. On the other hand, a result of Lannes [12] implies that the natural map $[B\mathbb{Z}/p, (B\pi)_p^{\wedge}] \to \operatorname{Hom}_{\mathscr{A}_p}(H^*B\pi, H^*B\mathbb{Z}/p)$ is bijective. Consequently $Bi^* \circ Bj^* \neq 0$. Since f is a homotopy equivalence, the map f^* must be an isomorphism. Thus the composition $Bi^* \circ Bj^* \circ f^*$ would not be zero. This is a contradiction, since this composition is equal to the zero map $Bi^* \circ B\rho^*$.

Next suppose ρ is injective. Then $B\rho^*$ is injective by transfer argument. Hence the self-map f^* is injective on each finite dimensional vector space $H^n(B\pi; \mathbb{F}_p)$ and hence f^* is bijective for dimensional reasons. Therefore the self-map f of $(B\pi)^{\wedge}_{\rho}$ is a homotopy equivalence. \square

Proof of Corollary 2. (a) If p-rank $(\pi) > p$ -rank(G) and $f: (B\pi)^{\wedge}_p \to (BG)^{\wedge}_p$ with $f|B\pi_p \simeq B\rho$, then Theorem 1 shows $f \simeq 0$. Thus $\max((B\pi)^{\wedge}_p, (BG)^{\wedge}_p) = \max((B\pi)^{\wedge}_p, (BG)^{\wedge}_p)_0$. The desired result follows from Lemma 1.3.

(b) Suppose X is a nontrivial retract of $(B\pi)_p^{\wedge}$ with $X \stackrel{!}{\rightleftharpoons} (B\pi)_p^{\wedge}$ and $r \circ i \simeq 1_X$. If $i \circ r|_{b\pi_p} \simeq B\rho$, then Theorem 1 says that ρ is injective. Lemma 1.4 shows $i \circ r$ is a homotopy equivalence. Consequently, the epimorphism i^* is also a monomorphism. Hence the map i would be a homotopy equivalence. This contradiction completes the proof. \square

2. Alternating groups and symmetric groups

We will prove that the alternating group A_n satisfies the hypothesis of Theorem 1. To do so we need to take a close look at the center of a p-Sylow subgroup. The following lemma will be used for A_n and other finite groups.

Lemma 2.1. Suppose $V \rtimes H$ is a semidirect product where the center of H, denoted by Z(H), acts faithfully on the abelian group V. Then the center of the group $V \rtimes H$ is equal to the set $\{v \in V | hv = vh \text{ for any } h \in H\}$.

Proof. It is clear that $Z(V \rtimes H)$ includes this set since V is abelian Conversely, if $v_0h_0 \in Z(V \rtimes H)$ where $v_0 \in V$ and $h_0 \in H$, then we have

$$(v_0h_0)h = v_0 \cdot h_0h$$
, $h(v_0h_0) = hv_0h^{-1} \cdot hh_0$.

Hence $hv_0h^{-1} = v_0$ and $h_0h = hh_0$ for any $h \in H$. We note that $h_0 \in Z(H)$. It remains to show $h_0 = 1$. Consider the following

$$(v_0h_0)\cdot v = v_0h_0vh_0^{-1}\cdot h_0\,,\quad v(v_0h_0) = vv_0\cdot h_0\,.$$

Since V is abelian, we see $h_0vh_0^{-1}=v$ for any $v\in V$. According to our assumption, Z(H) acts faithfully on V. Consequently $h_0=1$, since $h_0\in Z(H)$. \square

Proposition 2.2. The alternating group A_n satisfies the hypothesis of Theorem 1 at any prime p.

Proof. Since any two *p*-Sylow subgroups are conjugate, we may choose one to prove the desired result.

First suppose p is odd. Then a p-Sylow subgroup of A_n is also a p-Sylow subgroup of the symmetric group Σ_n . If n is a power of p, a p-Sylow subgroup of A_{p^i} , say P_i can be expressed as the wreath product $P_{i-1} \wr C_p$ where C_p is a cyclic group of order p and $P_1 = \mathbb{Z}/p\langle (1, 2 \cdots p) \rangle$. For example, if i = 2, the cyclic group C_p is generated by $(1 p + 1 \cdots (p-1)p+1) \cdots (p-1)p+(p-1)\cdots (p-1)p+(p-1)$. In general, if $n = a_0 + a_1p + \cdots + a_kp^k$ with $0 \le a_i < p$ for $i = 0, \ldots, k$, then $\prod_{i=1}^k (\prod_{j=1}^{a_i} P_j)$ is a p-Sylow subgroup of A_n .

When n < 2p, the p-Sylow subgroup is isomorphic to \mathbb{Z}/p if it is not trivial. Obviously the result holds. We now assume $2p \le n$. Since

$$Z\left(\prod_{i=1}^k\prod_{i=1}^{a_i}P_i\right)=\prod_{i=1}^k\prod_{i=1}^{a_i}Z(P_i)\,,$$

it suffices to consider the case $n=p^i$ for some $i \ge 2$. Using Lemma 2.1 one can show that (for any p) the center of P_i is isomorphic to \mathbb{Z}/p generated by $z=(1\cdots p)(p+1\cdots 2p)\cdots (p^i-p+1\cdots p^i)$. Let $z'=(1\cdots p)(p+1\cdots 2p)^{-1}\cdots (p^i-p+1\cdots p^i)^{-1}$ so that $z\cdot z'=(1\cdots p)^2$ and $z'\in P_i$. Note here that P_i contains all of the above p-cycles. We claim $z\sim z'$. Notice that if σ is

a p-cycle, then σ^{-1} is also a p-cycle. Hence there is a $g \in \Sigma_p$ such that $\sigma^{-1} = g\sigma g^{-1}$. Consequently we can find $\hat{g} \in \Sigma_p \times \cdots \times \Sigma_p \subset \Sigma_{p^i}$ such that $z' = \hat{g}z\hat{g}^{-1}$. If $\hat{g} \in A_{p^i}$, we are done. If $\hat{g} \notin A_{p^i}$, let

$$h = (1 p + 1)(2 p + 2) \cdots (p 2p).$$

The conjugation by h switches the first p-cycle and the second one. If $\hat{g} = 1 \times g_2 \times \cdots \times g_k \in \Sigma_p \times \cdots \times \Sigma_p$, let $\overline{g} = g_2 \times 1 \times g_3 \times \cdots \times g_k$. It follows that $\overline{g}h \in A_{p^i}$ for $i \geq 2$ and that $(\overline{g}h)z(\overline{g}h)^{-1} = z'$. We now see that the weak closure of $\{z\}$ contains a p-cycle since p is odd. Consequently we can show that any generator of P_i is conjugate in A_{p_i} to an element of the elementary p-abelian subgroup of P_i generated by the p-cycles $(1 \cdots p), \ldots, (p^i - p + 1 \cdots p^i)$. Thus the weak closure is equal to the p-Sylow subgroup P_i .

Next suppose p=2. The argument is similar to the one we just used. Let $A_n(2)$ and $\Sigma_n(2)$ denote a 2-Sylow subgroup of A_n and that of Σ_n respectively. We first consider when n is a power of 2. For example, one sees that $A_4(2)$ is $\mathbb{Z}/2 \times \mathbb{Z}/2$ generated by (12)(34) and (13)(24). For n=8, if

$$E = \mathbb{Z}/2\langle (12)(34)\rangle \times \mathbb{Z}/2\langle (12)(56)\rangle \times \mathbb{Z}/2\langle (12)(78)\rangle$$

and

$$K = (\mathbb{Z}/2\langle (13)(24)\rangle \times \mathbb{Z}/2\langle (57)(68)\rangle) \rtimes \mathbb{Z}/2\langle \sigma \rangle$$

where $\sigma = (15)(26)(37)(48)$, then K normalizes E and $A_8(2) = E \cdot K$. Inductively $A_{2i}(2) = E_i \cdot K_i$ where E_i is an elementary abelian 2-group and K_i

is a group generated by $K_{i-1} \times K_{i-1}$ and the element $(1 \ 2^{i-1} + 1) \cdots (2^{i-1} \ 2^i)$. Again using Lemma 2.1 one can show that the center of $A_{2^i}(2)$ is isomorphic to $\mathbb{Z}/2$ generated by

$$Z = (12)(34)(56)(78)\cdots(2^{i}-3 \quad 2^{i}-2)(2^{i}-1 \quad 2^{i}).$$

Let

$$z' = (13)(24)(56)(78)\cdots(2^i - 3 \quad 2^i - 2)(2^i - 1 \quad 2^i)$$

so that zz'=(14)(23), $z'\in A_{2^i}$ and $z\sim z'$. Thus the weak closure of $\{z\}$ in A_{2^i} contains (14)(23). Consequently the group is equal to $A_{2^i}(2)$. Suppose now that $n=2^{i_1}+\cdots+2^{i_k}$ with $i_1>\cdots>i_k$ and k>1. Then $A_n(2)=(\Sigma_{2^{i_1}}(2)\times\cdots\times\Sigma_{2^{i_k}}(2))\cap A_n$. If $\tau=\tau_1\times\tau_2\times\cdots\times\tau_k$ is contained in the center of $A_n(2)$, then $\tau_j\in Z(\Sigma_{2^{i_j}}(2))$. One can show that the weak closure of $\{\tau\}$ contains an element conjugate to (12)(34). Thus this group must be $A_n(2)$. \square

Next we consider the space $(B\Sigma_n)_p^{\wedge}$, where Σ_n is the symmetric group. For an odd prime p this group satisfies the hypothesis of Theorem 1. This follows from Proposition 2.2.

Theorem 2.3. (a) If p is odd, then $(B\Sigma_n)_p^{\wedge}$ has no nontrivial retracts. The only nontrivial retract of $(B\Sigma_n)_p^{\wedge}$ for $n \geq 4$ is the space $B\mathbb{Z}/2$ up to homotopy.

- (b) Let p be odd. If $n \equiv 0$, $1 \mod p$, then $[(B\Sigma_n)_p^{\wedge}, (BA_n)_p^{\wedge}] = 0$. If $n \not\equiv 0$, $1 \mod p$, then $(B\Sigma_n)_p^{\wedge} \simeq (BA_n)_p^{\wedge}$.
- (c) The map $[B\mathbb{Z}/2, (BA_n)_2^{\wedge}] \to [(B\Sigma_n)_2^{\wedge}, (BA_n)_2^{\wedge}]$ induced by the projection $\Sigma_n \to \mathbb{Z}/2$ is bijective, where the kernel of this projection is A_n .

Here we note related results about the unitary group U(n) and the orthogonal group O(n). On the level of classifying spaces we have the fibrations $BSU(n) \to BU(n) \to BS^1$ and $BSO(n) \to BO(n) \to B\mathbb{Z}/2$. From [10 and 11] one can observe the following

Theorem 2.4. (a) The nontrivial p-local retracts of BU(n) are p-equivalent to

- (i) BS^1 if $n \equiv 0 \mod p$,
- (ii) BS^1 or BSU(n) if $n \not\equiv 0 \mod p$.
- (b) The nontrivial p-local retracts of BO(n) are p-equivalent to
 - (i) none if p is odd,
 - (ii) $B\mathbb{Z}/2$ if p=2 and n is even,
 - (iii) $B\mathbb{Z}/2$ or BSO(n) if p = 2 and n is odd.

We also note that $BU(n) \cong BS^1 \times BSU(n)$ when $n \not\equiv 0 \mod p$, and that $BO(2k) \cong BO(2k+1) \cong BSO(2k+1)$ when p is odd. It is easy to see that $O(2k+1) \cong \mathbb{Z}/2 \times SO(2k+1)$ as groups for any k. Consequently $BO(2k+1) \cong B\mathbb{Z}/2 \times BSO(2k+1)$ without localization. Finally, Theorem 2.3 implies that $(B\Sigma_n)_p^{\wedge} \simeq (BA_n)_p^{\wedge}$ if and only if $n \not\equiv 0$, $1 \mod p$.

We need the following lemma to prove part (b) of Theorem 2.3.

Lemma 2.5. Let p be odd. The normalizers of the cyclic group $\mathbb{Z}/p\langle (12\cdots p)\rangle$ in Σ_p and in A_p are the following:

$$N_{\Sigma_p}\mathbb{Z}/p = \mathbb{Z}/p \rtimes \mathbb{Z}/p - 1$$
, $N_{A_p}\mathbb{Z}/p = \mathbb{Z}/p \rtimes \mathbb{Z} / \frac{p-1}{2}$

where both $\mathbb{Z}/p-1$ and $\mathbb{Z}/\frac{p-1}{2}$ act freely on $(\mathbb{Z}/p)^*$.

Proof. Let b be a multiplicative generator of the unit group $(\mathbb{Z}/p)^* = \mathbb{Z}/p - 1$. If $a = (12 \cdots p)$, the bth power of a is another p-cycle. Hence we can find $g \in \Sigma_p$ such that $a^b = gag^{-1}$. If $S(\Sigma_p)$ denotes the set of all p-Sylow subgroups of Σ_p , then $|N_{\Sigma_p}\mathbb{Z}/p| = |\Sigma_p|/|S(\Sigma_p)| = p!/(p-2)! = p(p-1)$. Consequently

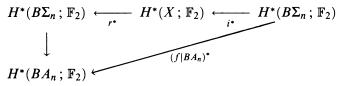
$$N_{\Sigma_n}\mathbb{Z}/p = \mathbb{Z}/p\langle a \rangle \rtimes \mathbb{Z}/p - 1\langle g \rangle$$
.

Similarly we see

$$N_{A_p}\mathbb{Z}/p = \mathbb{Z}/p\langle a \rangle \rtimes \mathbb{Z} / \frac{p-1}{2}\langle g^2 \rangle$$
. \square

Proof of Theorem 2.3. (a) For an odd prime p the desired result is obtained since Σ_n satisfies the hypothesis of Theorem 1 at p. It remains to show that if X is a nontrivial retract of $(B\Sigma_n)_2^{\wedge}$ for $n \geq 4$, then X is homotopy equivalent to $B\mathbb{Z}/2$. Suppose $X \stackrel{\iota}{\rightleftharpoons} (B\Sigma_n)^{\wedge}_2$ with $r \circ i \simeq 1_X$. Let $f = i \circ r$. First we claim $f|BA_n \simeq 0$. Let P be a 2-Sylow subgroup of Σ_n . By Lemma 1.4 it suffices to show that if $f|BA_n \neq 0$, then $f|BP \simeq B\rho$ for some injective homomorphism $\rho: P \to \Sigma_n$. If $f|BA_n \not\simeq 0$, Theorem 1 implies $\ker \rho \cap A_n = 1$. Recall that for a 2-Sylow subgroup Q of A_n we have $P = Q \rtimes \mathbb{Z}/2$. We notice that $|Q| \le |\operatorname{Im} \rho| = |P|/|\ker \rho|$. Consequently $|\ker \rho| \le 2$. An element τ of order 2 in Σ_n has the form $(a_1b_1)\cdots(a_kb_k)$ where a_i 's and b_i 's are mutually distinct. Suppose $\tau \in \ker \rho$. If k = 1, then Lemma 1.1 would imply that ρ is trivial, since transpositions generate the symmetric group. If k > 2, we consider a 2-Sylow subgroup containing the transpositions $(a_1b_1), (a_2b_2), \ldots, (a_kb_k)$. One can see that at least two other elements in the 2-Sylow subgroup are conjugate to τ in Σ_n . This would imply $|\ker \rho| \geq 3$. Thus $\ker \rho = 1$. Since X is a nontrivial retract, this is a contradiction. Therefore $f|BA_n \simeq 0$.

We now consider the following commutative diagram



Notice that the image of $f^* = r^* \circ i^*$ is included in the kernel of $H^*(B\Sigma_n; \mathbb{F}_2) \to H^*(BA_n; \mathbb{F}_2)$. It is known that this kernel is the ideal generated by the generator w of $H^1(B\Sigma_n; \mathbb{F}_2)$, [17]. We claim $\operatorname{Im} f^* = \mathbb{F}_2[w]$. Since r^* is injective, we may identify $\operatorname{Im} f^*$ with $H^*(X; \mathbb{F}_2)$. If $w \notin H^1(X; \mathbb{F}_2)$, then $i^*(w) = 0$. This would imply $i^* = i^* \circ f^* = 0$. Thus $H^1(X; \mathbb{F}_2) = \mathbb{F}_2(w)$ and hence $\mathbb{F}_2[w] \subset \operatorname{Im} f^*$. Next suppose y is an element of the set $H^*(X; \mathbb{F}_2) - \mathbb{F}_2[w]$ with minimal degree. We can write y = wz for some $z \in H^*(B\Sigma_n; \mathbb{F}_2)$. Since $y = i^* \circ r^*(y) = i^*(w)i^*(z) = w \cdot i^*(z)$, it follows that $i^*(z) \in H^*(X; \mathbb{F}_2) - \mathbb{F}_2[w]$. This contradicts the minimality of the degree of y since $\deg w = 1$. Consequently $H^*(X; \mathbb{F}_2) \cong \mathbb{F}_2[w]$.

A section s for the group extension $A_n \to \Sigma_n \to \mathbb{Z}/2\langle t \rangle$ is given by s(t) = (12). If $f|B\mathbb{Z}/2 \simeq 0$, then Lemma 1.1 implies f = 0. Thus $f|B\mathbb{Z}/2 \not\simeq 0$. It follows that the retract X is 2-equivalent to $B\mathbb{Z}/2$. Any retract of a p-complete space is p-complete. We now conclude that X is homotopy equivalent to $B\mathbb{Z}/2$.

(b) Suppose $f: (B\Sigma_n)^{\wedge}_p \to (BA_n)^{\wedge}_p$ is a nonzero map. Let D be a p-Sylow subgroup of Σ_n containing $E = \prod_{i=0}^{\lfloor (n-p)/p \rfloor} \mathbb{Z}/p\langle \sigma_i \rangle$ with $\sigma_i = (ip + 1)$ $1 \cdots ip + p$). If $f|BD \simeq B\rho'$, Theorem 1 says that ρ' is injective, since p is odd. Considering the conjugation by an element of A_n , we may assume $\rho'(D) = D$. Recall here that an element of order p is a product of distinct p-cycles. If $i: A_n \to \Sigma_n$ is the inclusion, the map $f \circ Bi$ is a homotopy equivalence. Using Lemma 1.1 one can find a nonnegative integer k such that $(f \circ Bi)^k \circ f|_{BD} \simeq B\rho$ where ρ is an automorphism which sends the p-cycles to the p-cycles. Let $e_i = \rho(\sigma_i)$ for $0 \le i \le \lfloor \frac{n-p}{p} \rfloor$. According to Lemma 2.5 there is $g \in N_{\Sigma_p} \mathbb{Z}/p$ such that $g\sigma_0 g^{-1} = \sigma_0^b$ where b is a multiplicative generator of $(\mathbb{Z}/p)^*$. If $\hat{g} = g \times 1 \times \cdots \times 1 \in \Sigma_p \times \Sigma_p \times \cdots \times \Sigma_p \subset \Sigma_n$, then $\rho|_E = \rho|_E \circ C_{\hat{g}}$ in Rep (E, A_n) since $BC_{\hat{g}} \simeq 1_{B\Sigma_n}$. Consequently there is $a \in A_n$ such that $C_a(e_0) = e_0^b$ and $C_a(e_i) = e_i$ for $1 \le i \le \lfloor \frac{n-p}{p} \rfloor$. We notice that $a \in N_{\Sigma_p} \mathbb{Z}/p \times \mathbb{Z}p \times \cdots \times \mathbb{Z}/p \times \Sigma_{n-p^*[n/p]}$ since the centralizer of \mathbb{Z}/p in Σ_p is \mathbb{Z}/p itself. If $n \equiv 0, 1 \mod p$, this would imply that there is $a' \in$ $N_{A_p}\mathbb{Z}/p$ such that $a'\sigma_0(a')^{-1}=\sigma_0^b$. This contradicts Lemma 2.5. Therefore $[(B\Sigma_n)_p^{\wedge}, (BA_n)_p^{\wedge}] = 0 \text{ if } n \equiv 0, 1 \mod p.$

Next, if $n \not\equiv 0$, 1 mod p, then $\mathbb{Z}/2 = \Sigma_n/A_n$ acts trivially on a p-Sylow subgroup of A_n . By [3, p. 258] one can show that the map $H^*(B\Sigma_n; \mathbb{F}_p) \xrightarrow{(Bi)^*} H^*(BA_n; \mathbb{F}_p)$ is an isomorphism. Therefore $(B\Sigma_n)_p^{\wedge} \simeq (BA_n)_p^{\wedge}$.

(c) Let $f: (B\Sigma_n)^{\wedge}_2 \to (BA_n)^{\wedge}_2$. If $f \circ (Bi)^{\wedge}_2$ is a nonzero self-map of $(BA_n)^{\wedge}_2$, Theorem 1 and Lemma 1.5 imply that this map is a homotopy equivalence. This would imply that $(BA_n)^{\wedge}_2$ is a retract of $(B\Sigma_n)^{\wedge}_2$. According to part (a), this is a contradiction. Thus $f \circ (Bi)^{\wedge}_2 = 0$. One can show that f factors through $B\mathbb{Z}/2$ since $\max((B\Sigma_n)^{\wedge}_2, (BA_n)^{\wedge}_2) \simeq \max_{\mathbb{Z}/2}(E\mathbb{Z}/2, \max(BA_n, (BA_n)^{\wedge}_2))$ and the map $\lambda: (BA_n)^{\wedge}_2 \to \max(BA_n, (BA_n)^{\wedge}_2)_0$ is weakly equivalent. This proves the induce map is onto. Notice next that the map $H^*(B\mathbb{Z}/2; \mathbb{F}_2) \to H^*(B\Sigma_n; \mathbb{F}_2)$ is induced by the projection is a monomorphism. By a result of Lannes [12] we can show the map $[B\mathbb{Z}/2, (BA_n)^{\wedge}_2] \to [(B\Sigma_n)^{\wedge}_2, (BA_n)^{\wedge}_2]$ is one-to-one. \square

3. GENERAL LINEAR GROUPS

Notation. Let $e_{ij}(\alpha) \in GL(n, \mathbb{F}_q)$ denote the elementary matrix with entry $\alpha \in \mathbb{F}_q^*$ in the (i,j)th place. We make a convention that $e_{ij} = e_{ij}(\alpha)$ for $\alpha = 1$. Next $d_{ij}(\alpha) \in Mat_n(\mathbb{F}_q)$ denotes the $n \times n$ matrix with entries 0 except the (i,j)th entry α . Equivalently $d_{ij}(\alpha) = e_{ij}(\alpha) - I_n$. We write $d_{ij} = d_{ij}(\alpha)$ for $\alpha = 1$, $d_i(\alpha) = d_{ij}(\alpha)$ for i = j, and $d_i = d_i(\alpha)$ for $\alpha = 1$.

Lemma 3.1. The unipotent subgroup U_n of $GL(n, \mathbb{F}_q)$, upper triangular matrices with all diagonal entries equal to 1, is generated by the elementary matrices $\{e_{ii+1}(\alpha)|\alpha\in\mathbb{F}_q^*,\ 1\leq i\leq n-1\}$.

Proof. Suppose H_n is the subgroup of U_n generated by the above elementary matrices. We will show $H_n = U_n$ by induction. If n = 2, it is clear that $H_2 = U_2$. Assume $n \ge 3$ and the result holds up to n - 1. By the hypothesis of induction we see $e_{ij}(\alpha) \in H_n$ for any $\alpha \in \mathbb{F}_q^*$ unless i = 1 and j = n:

$$\begin{pmatrix} H_{n-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} U_{n-1} & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ p & H_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & U_{n-1} \end{pmatrix}.$$

Notice here that $e_{1n-1}(\alpha) \cdot e_{n-1n}(1) \cdot e_{1n-1}(-\alpha) \cdot e_{n-1n}(-1) = e_{1n}(\alpha)$. Hence $e_{1n}(\alpha) \in H_n$ for any $\alpha \in \mathbb{F}_q^*$. Any element in U_n has the form $\begin{pmatrix} 1 & B \\ 0 & A \end{pmatrix}$ where $A \in U_{n-1}$. This matrix decomposes as follows

$$\begin{pmatrix} 1 & B \\ 0 & A \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} 1 & B \\ 0 & I_{n-1} \end{pmatrix}$$

where I_{n-1} is the identity matrix. Since $U_{n-1} = H_{n-1}$, it follows that $\begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} \in H_n$. If $B = (b_2, b_3, \dots, b_n)$, then

$$\begin{pmatrix} 1 & B \\ 0 & I_{n-1} \end{pmatrix} = \prod_{i=2}^n e_{1i}(b_i) \in H_n.$$

Therefore $\begin{pmatrix} 1 & B \\ 0 & A \end{pmatrix} \in H_n$ and hence $H_n = U_n$. \square

Lemma 3.2. Any two of elementary matrices in the unipotent group U_n are conjugate to each other in $GL(n, \mathbb{F}_q)$.

Proof. We will show that any $e_{ij}(\alpha)$ is conjugate to e_{12} . If D is the diagonal matrix $d_1(\alpha) + \sum_{i=1}^n d_i$, then $De_{12}D^{-1} = e_{12}(\alpha)$. If T is the permutation $(1\ i)(2\ j)$, then $Te_{12}(\alpha)T^{-1} = e_{ij}(\alpha)$. \square

Lemma 3.3. The center of U_n is $\{e_{1n}(\alpha) | \alpha \in \mathbb{F}_a^*\} \cup \{I_n\}$.

Proof. Notice that $Ae_{ij} = e_{ij}A$ if and only if $Ad_{ij} = d_{ij}A$ where $A \in U_n$. If $A = (a_{ij})$ we see $Ad_{ij} = \sum_{k=1}^n d_{kj}a_{ki}$ and $d_{ij}A = \sum_{k=1}^n d_{ik}a_{jk}$. Hence $Ad_{ij} = d_{ij}A$ if and only if $a_{ki} = 0$ for $1 \le i \le n-1$ and $1 \le k \le i-1$, and $a_{jk} = 0$ for $2 \le j \le n$ and $j+1 \le k \le n$. This implies the desired result. \square

Proposition 3.4. The general linear group $GL(n, \mathbb{F}_q)$ satisfies the hypothesis of Theorem 1 at p where q is a power of p.

Proof. First we note that the unipotent group U_n is a p-Sylow subgroup π_p of $GL(n, \mathbb{F}_q)$ since q is a power of p. Lemma 3.3 shows that $z = e_{1n}(\alpha)$ for some $\alpha \in \mathbb{F}_q^*$. The desired result follows from Lemma 3.1 and Lemma 3.2. \square

The following lemma is known.

Lemma 3.5. Any element in the finite field \mathbb{F}_q is written as the sum of two squares.

Proposition 3.6. The special linear group $SL(n, \mathbb{F}_q)$ satisfies the hypothesis of Theorem 1 at p where q is a power of p.

Proof. If $n \ge 3$, Lemma 3.2 is true for $SL(n, \mathbb{F}_q)$. In the proof the diagonal matrix D would be $d_1(\alpha^{-1}) + d_2 + \cdots + d_{n-1} + d_n(\alpha)$ and we can find a suitable T in $SL(n, \mathbb{F}_q)$. The rest of the argument is the same. For n = 2, Lemma 3.2 is false. But, since

$$\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x^{-1} & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 1 & x^2 \alpha \\ 0 & 1 \end{pmatrix},$$

Lemma 3.5 implies the desired result. □

Since the kernel of the projection $SL(n, \mathbb{F}_q) \to PSL(n, \mathbb{F}_q)$ is isomorphic to $\mathbb{Z}/(n, q-1)$, [2, p. 62] shows $(BSL(n, \mathbb{F}_q))_p^{\wedge} \simeq (BPSL(n, \mathbb{F}_q))_p^{\wedge}$. Next, we can show $(BSL(n, \mathbb{F}_q))_p^{\wedge} \simeq (BGL(n, \mathbb{F}_q))_p^{\wedge}$ if and only if (n, q-1) = 1. In fact, if

 $A(\alpha)=e_{12}(\alpha)+\sum_{i=2}^{n-1}d_{i\,i+1}$, then $A(\alpha)\in U_n$ and all $A(\alpha)$'s are conjugate each other in $GL(n\,,\,\mathbb{F}_q)$. In $SL(n\,,\,\mathbb{F}_q)$, however, A(1) is not conjugate to $A(\beta)$ unless β is the nth power of some element of \mathbb{F}_q^* . From Theorem 1 and Lemma 1.1 it follows that $[(BGL(n\,,\,\mathbb{F}_q))_p^\wedge\,,\,(BSL(n\,,\,\mathbb{F}_q))_p^\wedge]=0$ if $(n\,,\,q-1)\neq 1$. If $(n\,,\,q-1)=1$, we see $GL(n\,,\,\mathbb{F}_q)\cong SL(n\,,\,\mathbb{F}_q)\times\mathbb{F}_q^*$. Because a scalar multiple of the identity αI_n for $\alpha\in\mathbb{F}_q^*$ is contained in $SL(n\,,\,\mathbb{F}_q)$ only if $\alpha=1$ in this case.

4. Symplectic groups

Notation. Let $s_{ij}(\alpha)$ denote the $n \times n$ matrix $d_{ij}(\alpha) + d_{ji}(\alpha)$ for $i \neq j$. For example, if n = 3, then

$$s_{12}(\alpha) = \begin{pmatrix} 0 & \alpha & 0 \\ \alpha & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad s_{13}(\alpha) = \begin{pmatrix} 0 & 0 & \alpha \\ 0 & 0 & 0 \\ \alpha & 0 & 0 \end{pmatrix}.$$

We write $s_{ij} = s_{ij}(\alpha)$ for $\alpha = 1$. Next $r_{ij}(\alpha)$ denotes $d_{ij}(\alpha) + d_{ji}(-\alpha) \in Mat_n(\mathbb{F}_q)$ for $i \neq j$. Likewise $r_{ij} = r_{ij}(\alpha)$ for $\alpha = 1$.

For $A \in GL(n, \mathbb{F}_q)$, let [A] denote $2n \times 2n$ matrix

$$\begin{pmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{pmatrix} \in GL(2n, \mathbb{F}_q).$$

For $B \in Mat_n(\mathbb{F}_q)$, let

$$\langle B \rangle = \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix} \in GL(2n, \mathbb{F}_q).$$

Lemma 4.1.

(i)
$$[A]\langle B\rangle[A]^{-1} = \langle AB^tA\rangle,$$

(ii)
$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} = \begin{pmatrix} \alpha^2 b_1 & \alpha \beta b_2 \\ \alpha \beta b_3 & \beta^2 b_4 \end{pmatrix}.$$

Lemma 4.2. Suppose $B = (b_{ij}) \in Mat_n(\mathbb{F}_q)$ for $1 \le i, j \le n$. If $AB^tA = B$ for any $A \in U_n$, then $b_{ij} = 0$ except (i, j) = (1, 1), (1, 2) and (2, 1).

Proof. Suppose k + m = n. The matrix B is partitioned into 9 submatrices

$$B = \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix}$$

where, for example, B_{11} is a $(k-2) \times (k-2)$ matrix, B_{22} is a 2×2 matrix and B_{33} is an $m \times m$ matrix. If E is a 2×2 matrix and

$$A = \begin{pmatrix} I_{k-2} & 0 \\ E & E \\ 0 & I_m \end{pmatrix} ,$$

then

$$AB^{t}A = \begin{pmatrix} B_{11} & B_{12}{}^{t}E & B_{13} \\ EB_{21} & EB_{22}{}^{t}E & EB_{23} \\ B_{31} & B_{32}{}^{t}E & B_{33} \end{pmatrix}.$$

Suppose $E = \binom{1 \ a}{0 \ 1}$ with $a \neq 0$ and $B = (b_{ij})$. Then $B_{12}{}^{t}E = B_{12}$ and $B_{32}{}^{t}E = B_{32}$ imply $b_{ik} = 0$ for $1 \leq i \leq k-2$, $k+1 \leq i \leq n$. Similarly $b_{kj} = 0$ for $1 \leq j \leq k-2$, $k+1 \leq j \leq n$ since $EB_{21} = B_{21}$ and $EB_{23} = B_{23}$. Finally $EB_{22}{}^{t}E = B_{22}$ implies $b_{kk} = 0$ for $2 \leq k \leq n$. \square

Proposition 4.3. The symplectic group $Sp(2n, \mathbb{F}_q)$ with $(n, q) \neq (2, 2)$ satisfies the hypothesis of Theorem 1 at p where q is a power of p.

Proof. The subgroup $Sp(2n, \mathbb{F}_q)$ of $GL(2n, \mathbb{F}_q)$ corresponding to the symplectic form $\sum_{i=1}^{n} (X_i Y_{n+i} - X_{n+i} Y_i)$ consists of those matrices M with $MJ_1^{\ t}M = J_1$ where

$$J_1 = \left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right).$$

A p-Sylow subgroup is given by the semidirect product

$$\pi_p = \{\langle B \rangle | ^t B = B\} \rtimes \{[A] | A \in U_n\},\,$$

[8, p. 192].

The center of U_n acts faithfully on the abelian group of $\langle B \rangle$'s. Lemma 2.1 and Lemma 4.2 imply that the center $Z(\pi_p)$ is included in the set $\{\langle d_1(b_1) + s_{12}(b_2)\rangle|b_1, b_2 \in \mathbb{F}_q\}$. If q is odd, then $b_2 = 0$. We need to consider three cases.

Case 1. Suppose $z=\langle d_1(b_1)\rangle$ for some $b_1\neq 0$. Lemma 1.1 and Lemma 4.1 show that if K denotes the weak closure of $\{z\}$ in π_p , then $\langle d_1(\alpha^2b_1)\rangle \in K$ for any $\alpha\in\mathbb{F}_q$. Since $\langle d_1(\alpha^2b_1)\rangle\cdot\langle d_1(\beta^2b_1)\rangle=\langle d_1((\alpha^2+\beta^2)b_1)\rangle\in K$ for any α , $\beta\in\mathbb{F}_q$, Lemma 3.5 implies $\langle d_1(b)\rangle\in K$ for any $b\in\mathbb{F}_q$. Note here that if $A\in GL(n,\mathbb{F}_q)$, then $[A]\in Sp(2n,\mathbb{F}_q)$. So $[A]\langle d_1\rangle[A]^{-1}=\langle d_2\rangle\in K$ by Lemma 1.1, if $A=s_{12}+\sum_{i=3}^n d_i$. For $A'=d_1+s_{12}+\sum_{i=3}^n d_i$, we see $[A']\langle d_1+d_2\rangle[A']^{-1}=\langle d_1(2)+s_{12}+d_2\rangle\in K$. Consequently $\langle d_1(2)+s_{12}+d_2\rangle\cdot(\langle d_1\rangle^{-1})^2\cdot\langle d_2\rangle^{-1}=\langle s_{12}\rangle\in K$. The abelian group $\{\langle B\rangle|B={}^tB\}$ is generated by $\langle d_1(b)\rangle$ and $\langle s_{12}\rangle$ together with their conjugacy classes in $Sp(2n,\mathbb{F}_q)$. Lemma 1.1 implies $\langle B\rangle\in K$ for any $\langle B\rangle\in\pi_p$. Next we can show that if $R=I_{2n}+r_{2n+2}-d_2-d_{n+2}$, then $R\in Sp(2n,\mathbb{F}_q)$ and $R\langle s_{12}\rangle R^{-1}=[e_{12}]$. Consequently, using Lemma 1.1, Lemma 3.1, and Lemma 3.2, we can show $[A]\in K$ for any $[A]\in\pi_p$ and therefore $K=\pi_p$.

Case 2. Suppose $z = \langle s_{12}(b_2) \rangle$ for some $b_2 \neq 0$. It suffices to show $\langle d_1(b) \rangle \in K$ for some $b \neq 0$ so that the argument is reduced to Case 1. Taking $\alpha = b_2^{-1}$ and $\beta = 1$ in Lemma 4.1(ii) we see $\langle s_{12} \rangle \in K$. Since $[e_{12}]$ is conjugate to $\langle s_{12} \rangle$ in $Sp(2n, \mathbb{F}_q)$, we see $[e_{12}] \in K$. Notice that

$$\langle s_{12} \rangle \cdot [e_{12}] = \begin{pmatrix} e_{12} & d_1(-1) + s_{12} \\ 0 & \iota e_{12}^{-1} \end{pmatrix} \in K.$$

If $Q = \begin{pmatrix} I_n & 0 \\ d_2 & I_n \end{pmatrix}$, then $Q \in Sp(2n, \mathbb{F}_q)$ and $Q\langle s_{12}\rangle[e_{12}]Q^{-1} = \langle d_1(-1) + s_{12}\rangle$. Consequently $\langle s_{12}\rangle \cdot \langle d_1(-1) + s_{12}\rangle^{-1} = \langle d_1\rangle \in K$.

Case 3. Suppose $z = \langle d_1(b_1) + s_{12}(b_2) \rangle$ for some $b_1 \neq 0$ and $b_2 \neq 0$. Hence q is assumed to be even. Again, it suffices to show $\langle d_1(b) \rangle \in K$ for some $b \neq 0$ unless (q, n) = (2, 2). If $A = s_{12} + \sum_{i=3}^{n} d_i$, then $[A]\langle d_1(b_1) + s_{12}(b_2) \rangle [A]^{-1} =$

 $\langle d_2(b_1) + s_{12}(b_2) \rangle \in K$. Hence $\langle d_1(b_1) + s_{12}(b_2) \rangle \cdot \langle d_2(b_1) + s_{12}(b_2) \rangle^{-1} = \langle d_1(b_1) + d_2(-b_1) \rangle \in K$. If $A' = d_1(x) + \sum_{i=2}^n d_i$ with $x \in \mathbb{F}_q^*$, then

$$[A']\langle d_1(b_1) + d_2(-b_1)\rangle [A']^{-1} \cdot \langle d_1(b_1) + d_2(-b_1)\rangle^{-1} = \langle d_1(b_1(x^2 - 1))\rangle \in K.$$

If $q \neq 2$, there is $x \in \mathbb{F}_q^*$ such that $x^2 \neq 1$. This implies $\langle d_1(b) \rangle \in K$ for some $b \neq 0$.

It remains to consider the case q=2 and $n\geq 3$. Since $b_1=1$ and $b_2=1$ in this case, we can see $\langle d_1+s_{12}\rangle$ and $\langle d_1+d_2\rangle$ are contained in K. If $A=d_1+d_2+s_{12}+s_{23}+\sum_{i=4}^n d_i$, then $[A]\in Sp(2n,\mathbb{F}_2)$ for $n\geq 3$ and $[A]\langle d_1+d_2\rangle[A]^{-1}=\langle d_3+s_{13}+s_{23}\rangle\in K$. Since $\langle d_1+s_{12}\rangle$ is conjugate to $\langle d_3+s_{23}\rangle$ in $Sp(2n,\mathbb{F}_q)$, we see $\langle d_3+s_{23}\rangle\in K$ and hence $\langle d_3+s_{13}+s_{23}\rangle\cdot\langle d_3+s_{23}\rangle^{-1}=\langle s_{13}\rangle\in K$. Consequently $\langle s_{12}\rangle\in K$ and Case 2 shows $\langle d_1\rangle\in K$. This completes the proof. \square

The kernel of the projection $Sp(2n, \mathbb{F}_q) \to PSp(2n, \mathbb{F}_q)$ is $\mathbb{Z}/2$ if q is odd and is trivial if q is even. Consequently $(BSp(2n, \mathbb{F}_q))_p^{\wedge} \simeq (BPSp(2n, \mathbb{F}_q))_p^{\wedge}$ if q is a power of p. The projective symplectic groups are all simple except for the cases (n, q) = (1, 2), (1, 3), (2, 2). Note that $Sp(4, \mathbb{F}_2)$ is isomorphic to the symmetric group Σ_6 .

5. ORTHOGONAL GROUPS

Proposition 5.1. The orthogonal group $O(2n, \mathbb{F}_q)$ with $n \geq 3$ satisfies the hypothesis of Theorem 1 at p where q is a power of p.

Proof. Recall that $O(2n, \mathbb{F}_q)$ can be regarded as the subgroup of $GL(2n, \mathbb{F}_q)$ which consists of those matrices that preserve the quadratic form $X_1X_{n+1} + X_2X_{n+2} + \cdots + X_nX_{2n}$ if q is even, or q is odd with n even or 4|q-1. Because the discriminant of this quadratic form is equal to $(-1)^n/2^{2n}$, which is a square under the condition.

Assume first that q is even. Then a 2-Sylow subgroup is given by the semidirect product $\pi_2 = \{\langle B \rangle | ^l B = B \text{ with } b_{ii} = 0 \text{ for any } i\} \rtimes \{[A] | A \in U_n\}$, [8, p. 192]. For $n \geq 3$ the center of U_n acts faithfully on the abelian groups of $\langle B \rangle$'s. Using Lemma 2.1 and Lemma 4.2 we can show that $Z(\pi_2) = \{\langle s_{12}(b) \rangle | b \in \mathbb{F}_q\}$. Hence $z = \langle s_{12}(b) \rangle$ for some $b \neq 0$. Taking $b_1 = 0$, $b_2 = b_3$, and $b_4 = 0$ in Lemma 4.1(ii) we can show that any two elements of $\{\langle s_{12}(b) \rangle | b \neq 0\}$ are conjugate in $O(2n, \mathbb{F}_q)$. According to Lemma 1.1, $\langle s_{12}(b) \rangle \in K$ for any b where K is the weak closure of $\{z\}$ in π_2 . For a fixed $b \in \mathbb{F}_q$, all the $\langle s_{ij}(b) \rangle$'s are conjugate to each other by the action of the $[\tau]$'s where τ is a permutation. Since the abelian group of $\langle B \rangle$ is generated by $\langle s_{ij}(b) \rangle$, it follows that $\langle B \rangle \in K$ for any $\langle B \rangle \in \pi_2$. Notice next that if T is the transposition interchanging X_2 and X_{n+2} , then $T \in O(2n, \mathbb{F}_q)$ and $T[e_{12}]T^{-1} = \langle s_{12} \rangle$. Consequently $[e_{12}] \in K$ and hence $\langle A \rangle \in K$ for any $A \in U_n$ by Lemma 1.1, Lemma 3.1, and Lemma 3.2. Therefore $K = \pi_2$.

Assume next that q is odd with n even or 4|q-1. A p-Sylow subgroup is given by the semidirect product

$$\pi_p = \{\langle B \rangle | {}^t B = -B\} \rtimes \{[A] | A \in U_n\}.$$

The center of π_p is $\{\langle r_{12}(b)\rangle|b\in\mathbb{F}_q\}$. If T is the transposition interchanging X_2 and X_{n+2} , then $T\in O(2n\,,\,\mathbb{F}_q)$ and $T[e_{12}]T^{-1}=\langle r_{12}\rangle$. We can show $K=\pi_p$.

Next we consider the case that q is odd with n odd and $4 \nmid q-1$. The quadratic form $\sum_{i=1}^n X_i X_{n+i}$ is isomorphic to $\sum_{i=1}^{n-2} X_i X_{n+i} + X_{n-1}^2 - X_{2n-1}^2 + X_n^2 - X_{2n}^2$. The orthogonal group $O(2n-2;\mathbb{F}_q)$ can be regarded as the subgroup of $GL(2n-2,\mathbb{F}_q)$ which consists of those matrices that preserve the quadratic form $\sum_{i=1}^{n-2} X_i X_{n+i} + X_{n-1}^2 + X_n^2$. One can see that the injective map $O(2n-2,\mathbb{F}_q) \to O_-(2n,\mathbb{F}_q)$ sends a p-Sylow subgroup isomorphically into π_p . Namely $\langle B \rangle [A]$ is contained in the image if and only if $b_{i\,n-1} = a_{i\,n-1}$ for $1 \leq i \leq n-1$, $b_{in} = a_{in}$ for $1 \leq i \leq n-2$, and $b_{n-1\,n} = 0 = a_{n-1\,n}$. Here $A = (a_{ij})$ and $B = (b_{ij})$. The center of the group is $\{\langle r_{12}(b) \rangle | b \in \mathbb{F}_q \}$. When n=3 and p is odd, we see $(BSL(4,\mathbb{F}_q))_p^{\wedge} \simeq (B\Omega(6,\mathbb{F}_q))_p^{\wedge}$ where $\Omega(6,q)$ is the commutator subgroup of $O(6,\mathbb{F}_q)$. Note that the index of $\Omega(6,\mathbb{F}_q)$ in $O(6,\mathbb{F}_q)$ is prime to p since p is odd. Lemma 1.1 together with the fact that $SL(4,\mathbb{F}_q)$ satisfies the desired result proves the case n=3. An induction completes the proof. \square

Let $\Omega(n\,,\,\mathbb{F}_q)$ denote the commutator subgroup of $O(n\,,\,\mathbb{F}_q)$. The kernel of the projection $\Omega(n\,,\,\mathbb{F}_q)\to P\Omega(n\,,\,\mathbb{F}_q)$ is at most $\mathbb{Z}/2$. Consequently, if p is odd, we see $(B\Omega(n\,,\,\mathbb{F}_q))^\wedge_p\simeq (BP\Omega(n\,,\,\mathbb{F}_q))^\wedge_p$. It is known that $P\Omega(2n\,,\,\mathbb{F}_q)$ is simple if $n\geq 3$. It is also known that if q is even, $Sp(2n\,,\,\mathbb{F}_q)$ is isomorphic to $O(2n+1\,,\,\mathbb{F}_q)$.

Proposition 5.2. The group $\Omega(2n, \mathbb{F}_q)$ with $n \geq 3$ satisfies the hypothesis of Theorem 1 at p where q is a power of the odd prime p.

Proof. Since q is odd, the commutator subgroup of $GL(n, \mathbb{F}_q)$ is $SL(n, \mathbb{F}_q)$. Recall that $[A] \in O(2n, \mathbb{F}_q)$ for any $A \in GL(n, \mathbb{F}_q)$ and that $[e_{12}]$ is conjugate to $\langle r_{12} \rangle$ in $O(2n, \mathbb{F}_q)$ when n is even or 4 divides q-1. One can see the p-Sylow subgroup π_p of $O(2n, \mathbb{F}_q)$ is also a p-Sylow subgroup of $\Omega(2n, \mathbb{F}_q)$ in this case. In the proof of Proposition 5.1, replace the transposition T by the permutation (2n+2)(3n+3). We see the permutation is contained in $\Omega(2n, \mathbb{F}_q)$ since its spinor norm is 1. A similar argument completes the proof for this case. It is not hard to prove the other case. \square

Proposition 5.3. The orthogonal group $O(2n-1, \mathbb{F}_q)$ with $n \geq 3$ satisfies the hypothesis of Theorem 1 at p where q is a power of the odd prime p.

Proof. First we need to find a suitable quadratic form for $O(2n-1,\mathbb{F}_q)$. The quadratic form $X_1X_{n+1}+\cdots+X_nX_{2n}$ is isomorphic to $X_1X_{n+1}+\cdots+X_{n-1}X_{2n-1}+X_n^2-X_{2n}^2$. The group $O(2n-1,\mathbb{F}_q)$ can be regarded as the subgroup of $GL(2n-1,\mathbb{F}_q)$ which consists of those matrices that preserve the quadratic form $X_1X_{n+1}+\cdots+X_{n-1}X_{2n-1}+X_n^2$. One can see that the injective map $O(2n-1,\mathbb{F}_q)\to O_\pm(2n,\mathbb{F}_q)$ sends a p-Sylow subgroup isomorphically into π_p . Namely $\langle B\rangle[A]$ is contained in the image if and only if $b_{in}=a_{in}$ for $1\leq i\leq n-1$. The center of the group is $\{\langle r_{12}(b)\rangle|b\in\mathbb{F}_q\}$. When n=3 and p is odd, we see $(BSp(4,\mathbb{F}_q))_p^\wedge\simeq (B\Omega(5,\mathbb{F}_q))_p^\wedge$. Note that the index of $\Omega(5,\mathbb{F}_q)$ in $O(5,\mathbb{F}_q)$ is prime to p since p is odd. Lemma 1.1 together with the result about $Sp(4,\mathbb{F}_q)$ proves the desired result for n=3. An induction completes the proof. \square

One can show that the analogous result holds for $\Omega(2n-1, \mathbb{F}_q)$ with $n \geq 3$.

6. Unitary groups

Notation. Let $t_{ij}(\alpha)$ denote the $n \times n$ matrix $d_{ij}(\alpha) = d_{ji}(-\alpha^q)$ for $i \neq j$ and $\alpha \in \mathbb{F}_{q^2}$. We write $t_{ij} = t_{ij}(\alpha)$ for $\alpha = 1$.

For $M=(m_{ij})\in Mat_n(\mathbb{F}_{q^2})$, let $M^{(q)}=(m_{ij}^q)\in Mat_n(\mathbb{F}_{q^2})$. Let $M^*={}^tM^{(q)}$. For example, if $M=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)$, then

$$M^* = \begin{pmatrix} a^q & c^q \\ b^q & d^q \end{pmatrix} .$$

For $A \in GL(n, \mathbb{F}_{q^2})$, let [A] denote

$$\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} \in GL(2n, \mathbb{F}_{q^2}).$$

For $B \in Mat_n(\mathbb{F}_{q^2})$ let $\langle B \rangle = \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix} \in GL(2n, \mathbb{F}_{q^2})$.

Lemma 6.1.

(i)
$$[A]\langle B\rangle[A]^{-1} = \langle ABA^*\rangle,$$

(ii)
$$\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \begin{pmatrix} \alpha^q & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha^{q+1}b_1 & \alpha b_2 \\ \alpha^q b_3 & b_4 \end{pmatrix}.$$

Lemma 6.2. If $b \in \mathbb{F}_{q^2}$ and $b^{q-1} + 1 = 0$, then $\{\alpha^{q+1}b | \alpha \in \mathbb{F}_{q^2}\} = \{x \in \mathbb{F}_{q^2} | x^q + x = 0\}$.

Proof. First we show $\alpha^{q+1}b$ is a solution of the equation $X^q + X = 0$. Since $\alpha^{q^2} = \alpha$ and $b^q + b = 0$, it follows that $(\alpha^{q+1}b)^q + \alpha^{q+1}b = \alpha^{q^2+q}b^q + \alpha^{q+1}b = \alpha^{q+1}(b^q + b) = 0$.

It remains to show that if $c^{q-1}+1=0$, then $\frac{c}{b}=\alpha^{q+1}$ for some $\alpha\in\mathbb{F}_{q^2}$. Recall that $\mathbb{F}_{q^2}^*$ is isomorphic to the cyclic group \mathbb{Z}/q^2-1 . Suppose a is a generator of this group. Then $b=a^k$ and $c=a^m$ for suitable k and m. If q is even, then $b^{q-1}=1=c^{q-1}$ and hence $k(q-1)=s(q^2-1)$ and $m(q-1)=t(q^2-1)$ for some s, $t\in\mathbb{Z}$. Consequently m-k=(t-s)(q+1). Thus $\frac{c}{b}=a^{m-k}=(a^{t-s})^{q+1}$. In the case q is odd we have $k(q-1)=(q^2-1)/2+s(q^2-1)$ and $m(q-1)=(q^2-1)/2+t(q^2-1)$ for some s, $t\in\mathbb{Z}$, since $b^{q-1}=-1=c^{q-1}$. Hence m-k=(t-s)(q+1) and therefore $\frac{c}{b}=(a^{t-s})^{q+1}$. \square

Proposition 6.3. The unitary group $U(2n, \mathbb{F}_{q^2})$ satisfies the hypothesis of Theorem 1 at p where q is a power of p.

Proof. The subgroup $U(2n, \mathbb{F}_{q^2})$ of $GL(2n, \mathbb{F}_{q^2})$ corresponding to the Hermitian form $\sum_{i=1}^n (X_i Y_{n+i}^q + X_{n+i} Y_i^q)$ consists of those matrices M with $MJ_0M^* = J_0$ where $M^* = {}^tM^{(q)}$ and $J_0 = \left(\begin{smallmatrix} 0 & I_n \\ I_n & 0 \end{smallmatrix}\right)$. The semidirect product

$$\pi_p = \{\langle B \rangle|^t B = -B^{(q)}\} \rtimes \{[A]|A \in U_n\}$$

is a p-Sylow subgroup of $U(2n,\mathbb{F}_{q^2})$, [8, p. 192]. First we will show that $Z(\pi_p)=\{\langle d_1(b)\rangle|b\in\mathbb{F}_{q^2}\ \text{with}\ b^q+b=0\}$. Along the line of the proof of Lemma 4.2 we can show that if $\langle B\rangle$ is contained in the center $Z(\pi_p)$, then $B=d_1(b_1)+t_{12}(b_2)$ for some b_1 , $b_2\in\mathbb{F}_{a^2}$. We note that

$$[e_{12}(a)]\langle d_1(b_1)+t_{12}(b_2)\rangle[e_{12}(a)]^{-1}=\langle d_1(b_1-ab_2^q+a^qb_2)+t_{12}(b_2)\rangle.$$

Hence $a^qb_2-ab_2^q=0$ for any $a\in\mathbb{F}_{q^2}$. Notice that the equation $b_2X^q-b_2^qX=0$ has at most q roots in \mathbb{F}_{q^2} if $b_2\neq 0$. Thus $b_2=0$. Since the action of $Z(U_n)$ on the abelian groups of $\langle B\rangle$'s is faithful, one can show the desired result.

Let K be the weak closure of $\{z\}$ in π_p where $z=\langle d_1(b)\rangle$ for some $b\in \mathbb{F}_{q^2}$ with $b^{q-1}+1=0$. Lemma 6.2 together with Lemma 6.1 implies that $\langle d_1(b)\rangle\in K$ for any $b\in \mathbb{F}_{q^2}$ with $b^q+b=0$. By an argument analogous to a part of the proof of Case 1 for $Sp(2n,\mathbb{F}_q)$ in §4, one can show $\langle s_{12}(b)\rangle\in K$ for such $b\in \mathbb{F}_{q^2}$. Since $b^q+b=0$, it follows that $\langle s_{12}(b)\rangle=\langle t_{12}(b)\rangle$. Lemma 6.1 implies $\langle t_{12}(b)\rangle\in K$ for any $b\in \mathbb{F}_{q^2}$. The abelian group $\{\langle B\rangle|^tB=-B^{(q)}\}$ is generated by $\langle d_1(b)\rangle$ with $b^q+b=0$ and $\langle t_{12}(b)\rangle$ for $b\in \mathbb{F}_{q^2}$ together with their conjugacy classes. Consequently $\langle B\rangle\in K$ for any $\langle B\rangle\in \pi_p$. Notice here that $t_{12}=r_{12}$. Hence, if T is the transposition interchanging X_2 and X_{n+2} , then $T\in U(2n,\mathbb{F}_{q^2})$ and $T[e_{12}]T^{-1}=\langle t_{12}\rangle$. Thus $[e_{12}]\in K$. This implies $[A]\in K$ for any $A\in U_n$. Consequently $K=\pi_p$. \square

REFERENCES

- J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. 35 (1976), 1-41.
- 2. A. Bousfield and D. Kan, *Homotopy limits, completion, and localization*, Lecture Notes in Math., vol. 304, Springer-Verlag, 1972.
- 3. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, 1956.
- 4. R. Carter, Simple groups of Lie type, Wiley-Interscience, New York, 1972.
- 5. J. Dieudonne, La géométrie des groupes classiques, Ergeb. Math. Grenzgeb., Neue Folge, Heft 5, Springer, Berlin, 1955.
- 6. W. G. Dwyer and C. W. Wilkerson, Spaces of null homotopic maps, preprint.
- 7. W. G. Dwyer and A. Zabrodsky, *Maps between classifying spaces*, Lecture Notes in Math., vol. 1298, Springer, 1987, pp. 106-119.
- 8. Z. Friedorowicz and S. Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Math., vol. 674, Springer, 1978.
- 9. E. Friedlander and G. Mislin, Locally finite approximation of Lie groups. II, Math. Proc. Cambridge Philos. Soc. 100 (1986), 505-517.
- 10. K. Ishiguro, A p-local splitting of BU(n), Proc. Amer. Math. Soc. 95 (1985), 307-311.
- 11. ____, Classifying spaces and p-local irreducibility, J. Pure Appl. Algebra 49 (1987), 253-258.
- 12. J. Lannes, Sur la cohomologie modulo p des p-groupes Abéliens élémentaires, Homotopy Theory, Proc. Durham Sympos. 1985, Cambridge Univ. Press, Cambridge, 1987.
- 13. H. R. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120 (1984), 39-87.
- 14. G. Mislin, The homotopy classification of self-maps on infinite quaternionic projective space, Quart. J. Math. Oxford 38 (1987), 245–257.
- 15. ____, On group homomorphism inducing mod p cohomology isomorphisms, preprint.
- D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. 94 (1971), 549-572, 573-602.
- 17. D. Quillen and B. B. Venkov, Cohomology of finite groups and elementary abelian subgroups, Topology 11 (1972), 317-318.
- 18. G. Segal, Classifying spaces and spectral sequences, Publ. Math. Inst. Hautes Etudes Sci. 34 (1968), 105-112.

- 19. M. Suzuki, Group theory. II, Springer-Verlag, 1986.
- 20. A. Zabrodsky, *Maps between classifying spaces*, Ann. of Math. Stud., no. 113, Princeton Univ. Press, 1987, pp. 228-246.

Department of Mathematics, Hofstra University, Hempstead, New York 11550